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Abstract— This paper presents a command-line tool, called
Entropia, that implements a family of conformance checking
measures for process mining founded on the notion of entropy
from information theory. The measures allow quantifying classi-
cal non-deterministic and stochastic precision and recall quality
criteria for process models automatically discovered from traces
executed by IT-systems and recorded in their event logs. A
process model has “good” precision with respect to the log it
was discovered from if it does not encode many traces that are
not part of the log, and has ‘“‘good” recall if it encodes most of
the traces from the log. By definition, the measures possess useful
properties and can often be computed quickly.

I. INTRODUCTION

Process mining is a research field concerned with extracting
knowledge from event sequence data that is stored in event
logs. Conceptually, process mining techniques assume that
events have at least three attributes: a timestamp, a case identi-
fier and an activity type [1]. Process mining techniques support
various process analysis tasks including automatic process
discovery, conformance checking, and variant analysis [2].

Conformance checking refers to those process mining tech-
niques that compare the behavior captured in an event log with
a normative process model [3]. A key challenge for research
on conformance checking is the definition of appropriate
measures that quantify the extent of correspondence between
the log and the model. A rich spectrum of measures have been
proposed, albeit many of them in an ad hoc manner [4]. The
recent stream of work on entropy-based techniques provides
a solid theoretical foundation for conformance checking mea-
sures with sound properties [5], [6], [7], [8], [9], but in the
past tool support has been somewhat limited.

In the paper at hand, we address this gap. Specifically, we
present a command-line tool, called Entropia, that implements
entropy-based conformance checking techniques. The tool is
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publicly available! and supports process analysts in several
scenarios in which commonalities and discrepancies between
process models and event logs are measured. Finally, the
reader can take a look at a screencast’ that demonstrates the
tool and check the user guide® that contains a comprehensive
collection of examples and tutorials on using Entropia.

The paper proceeds as follows. Section II gives an overview
of the theoretical foundations of conformance checking. Sec-
tion III introduces the Entropia tool using a practical use case
highlighting its analysis features. Section IV discusses the
maturity of the work. Section V provides illustrative examples.
Section VI discusses computational performance and current
limitations, before Section VII concludes.

II. CONFORMANCE CHECKING

The assessment of the model quality with respect to an
event log is paramount for process mining [1]. Buijs et
al. [10] introduce four main quality dimensions, namely fitness,
precision, generalization, and simplicity, which are currently
considered the de facto standard. Fitness captures the degree
to which the traces recorded in the event log can be replayed
on the process model. Precision penalizes the extra behavior
introduced by the model that is not recorded in the event
log. Conversely, generalization indicates how well the model
can support unforeseen traces. Finally, simplicity denotes the
capability of the model to express the behavior of the event
log while keeping the model easy to understand.
Conformance checking techniques provide a number of
approaches for assessing the four quality dimensions. One
can broadly classify them into two categories: descriptive and
quantitative. Descriptive techniques construct comprehensive
artifacts that aim to explain various aspects of the studied
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criterion, e.g., a description of all the commonalities and dis-
crepancies between a trace and a process model. Quantitative
techniques measure the quantity of the studied phenomenon,
e.g., as a number between zero and one. Orthogonal to this
classification is the partitioning of conformance checking
techniques into non-stochastic and stochastic ones. Stochastic
conformance checking techniques study relations between
some stochastic aspects of the compared model and log, e.g.,
distributions of traces recorded in the log and described in
the model. In contrast, non-stochastic techniques, even though
they may rely on the probabilistic aspects of the individual
compared artifacts, do not analyze the relations between them.

III. ENTROPIA

This section presents Entropia by specifying the use cases it
supports (Section III-A), the core principle behind the entropy-
based measuring of precision and recall (Section III-B), and
the command-line interface (CLI) of the tool (Section III-C).

A. Use Cases

Entropia implements the techniques for quantifying the pre-
cision and recall quality criteria in conformance checking
presented in [5], [6], [7], [8], and [9]. Two techniques [8],
[9] can be used to measure aspects that relate to stochastic
precision and recall quality criteria.

B. Entropy-Based Conformance Checking

The key idea for quantifying precision and recall between a
model that describes “relevant” behavior and a model that
captures “retrieved” behavior is to measure the magnitude of
the behavior the two models share in relation to the magnitude
of the behavior of one of the models.

Specific to the process mining context, one can think of an
event log as a model that specifies the relevant behavior, i.e.,
the behavior that provides information about the true behavior
it was sampled from. On the other hand, a process model
discovered from an event log specifies the “retrieved” behavior,
i.e., the behavior the applied discovery algorithm constructed
from the input event log.

Then, by following the principle for defining the corre-
sponding quality criteria in information retrieval [5], precision
can be defined as the ratio of the magnitude of the shared
behavior specified by the models of relevant and retrieved
behaviors to the magnitude of the retrieved behavior. Similarly,
recall is the ratio of the magnitude of the shared behavior to
the magnitude of the relevant behavior.

Figure 1 visualizes these ideas. Note that rel N ret refers to
the behavior shared by the relevant and retrieved behaviors of
the compared models.
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Fig. 1. Precision and recall quotients [5].

In the figure, rel and ret represent the relevant behavior and
retrieved behavior, respectively. Function m is used to measure
the magnitude of the corresponding (part) of the behavior. The
conformance checking approaches implemented in Entropia
interpret the behaviors of the compared models as collections
of the traces that these models describe, where a trace is a
sequence of process actions. Function m is implemented as the
measure of the entropy of a collection of traces; note that the
implemented conformance checking techniques use different
notions of entropy, and in different ways, refer to Section I'V.

The benefit from using the entropy to measure the magni-
tudes of collections of traces when calculating precision and
recall is twofold. First, one can measure entropy of an arbitrary
(potentially infinite) collection of traces. Second, the entropy-
based precision and recall measures can achieve a range of
desired properties [4], [11], [5], [8].

C. Interface

As of August 2020, the Entropia tool is in version 1.5. It is
invoked by executing the command:

java —jar Jjbpt-pm-entropia-1.5.jar <options>
The core CLI options of Entropia are listed in Table I.

TABLE I
CORE CLI OPTIONS OF THE Entropia TOOL.

[ Option (full | Option | Parameter | Description
--help -h print help message
--relevant -rel <path> model that describes relevant traces
--retrieved -ret <path> model that describes retrieved traces
--silent -s run tool in the silent mode
--version -v get version of this tool

The —h and -v options print the help message and tool
version, respectively, while options —-rel and -ret are
used to specify the models of relevant and retrieved traces,
respectively. To refer to a model, the user specifies its file path.
Option —s runs the tool in silent mode, in which the result
of the invocation is printed, without any debug information or
execution data. The tool accepts input models specified in one
of the following formats: eXtensible Event Stream (XES) [12],
Petri Net Markup Language (PNML) [13], Stochastic Petri Net
Markup Language (sPNML), Directly-Follows Graph (DFG),
Stochastic Deterministic Finite Automaton (SDFA). The latter
three formats are specific to our tool.

Further CLI options allow selection of a conformance
measure to be applied to the input data, and configuration
of it, and are detailed in the next section.

IV. MATURITY

The work on the code base of the tool started in August
2017, together with the start of the work on the entropy-based
approach for measuring precision and recall presented in [5].
The tool is integrated into the jBPT library [14], a compendium
of open-source business process technologies, the work on
which commenced in January 2009.

The approach presented in [5] suggests measuring precision
and recall by interpreting the compared models, e.g., process
model and event log, as collections of traces that they de-
scribe. The models are said to specify shared behavior if and



only if they describe identical traces. The magnitude of the
behavior captured by each of the compared models, and of the
behavior shared by the models, is determined as topological
entropy [15] of the corresponding collection of traces.

In [6], the authors generalize the approach from [5] by
replacing every collection of traces involved in the calculations
of the precision and recall measures with the collection of
all subtraces of all the traces it contains. Consequently, the
shared behavior of two collections of traces is identified as
a collection of all sequences of actions that are subtraces
of some traces in both compared collections. That is, this
approach considers all the shared subsequences of actions in
the compared models of traces for the measurements.

The measures described in [5] and [6] can be seen as
extremes of the spectrum, with either no or all subtraces
considered when determining the magnitudes of the collections
of traces. The approach presented in [7] allows for a flexible
analysis. In particular, based on knowledge of the compared
models, the user can specify the maximal number of allowed
skipped actions in a trace described by each of the models of
traces for determining the shared subtraces. This way, the user
can tune the measures towards the desired sensitivity to the
discrepancies in the compared behaviors.

In [8], entropy is used to extend conformance checking to
stochastic process mining. An event log and a stochastic pro-
cess model can be compared based on whether they exhibit the
same control flow, but also based on whether the frequency of
behavior in the event log matches the probabilities of behavior
in the model. To this end, both log and model are translated
into stochastic deterministic finite automata, the conjunction
of these automata is constructed, and the entropy of these
three automata yields two measures: stochastic recall and
stochastic precision. In [8], an evaluation shows the practical
applicability by searching for pairwise similar process models
in a 4000-model repository.

Finally, the entropic relevance measure presented in [9] is
a stochastic conformance measure computed as the average
number of bits required to compress (i.e., to perform the
entropy coding of) a trace from the log using the information
on the relative likelihood of traces encoded in the model.

Table II lists the tool options to select and configure the
supported conformance measures. Table III then summarizes
the characteristics of the conformance checking approaches
implemented in Entropia by specifying the input models of

TABLE II
SPECIFIC CLI OPTIONS OF THE Entropia TOOL.

[ Option | Parameter | Description [ Publ. |
—emp exact matching precision [5]
—emr exact matching recall [5]
—pmp partial matching precision [6]
—pmr partial matching recall [6]
—cpmp controlled partial matching precision [7]
-cpmr controlled partial matching recall [7]
-srel <num> number of allowed skips in relevant traces [7]
-sret <num> number of allowed skips in retrieved traces [7]
-sp stochastic precision [8]
-sr stochastic recall [8]

-r entropic relevance [9]

TABLE III
CHARACTERISTICS OF CONFORMANCE CHECKING APPROACHES.
[Publ. [ L-L [ L-M [ M-M | Stoch. | Log | Model |
[5] yes yes yes no XES PNML
[6] yes yes yes no XES PNML
[7] yes yes yes no XES PNML
[8] yes yes yes yes XES sPNML
9] yes yes no yes XES DFG, SDFA

retrieved and relevant traces (L—event log, M—process model)
supported by the approach presented in the corresponding
publication (Publ.); the ability to address the stochastic aspect
of the input models of traces (Stoch.); and the event log and
process model formats supported (Log—event log, and Model—
process model).

The approaches listed in Table III, except the technique
presented in [9], can be used to quantify precision and recall
conformance criteria between two (possibly infinite) collec-
tions of traces. The approach in [9] measures the entropic
relevance of a stochastic process model to an event log.
Relevance reflects a compromise between the precision and
recall criteria and has meaningful units.

V. EXAMPLES

In this section we provide some examples of Entropia, using
the Petri net N in Fig. 2, the SDFA A in Fig. 3, and an event
log E = [abce, ace, bce?, abcdcbe, abdcbe, aaacbe].
Note that E/ contains two instances of bce.
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Fig. 2. A Petri net.
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Fig. 3. An SDFA.

The entropy-based exact matching precision between /N and
L presented in [5] is computed using the CLI options:
—emp -rel=E.xes -ret=N.pnml
To allow up to two skips in traces of the Petri net and up
to one skip in the traces of the log, as described in [7], when
identifying similar traces in the computation of precision, these
CLI options should be employed:
—cpmp -rel=E.xes -ret=N.pnml -srel=1 -sret=2
These options compute the entropic relevance of A to E:

-r —-rel=E.xes -ret=A.sdfa

The computed values of exact matching precision, con-
trolled partial matching precision, and entropic relevance using



the above CLI options for net N, SDFA A and log E are
0.776, 0.833, and 11.368 bits, respectively. Further examples
of Entropia and the serialized models and log used in the
examples discussed above appear in the user guide.’

VI. DISCUSSION

All the techniques implemented in Entropia ver. 1.5 support
process models that describe arbitrary (potentially infinite)
collections of traces and impose no limitations on input logs
provided that they are explicitly recorded and, thus, are finite.
However, process models must be bounded, i.e., they must
induce finite reachability graphs. Various notions of semantic
correctness of process models require process models to be
bounded. Nevertheless, process models used in practice can
be incorrect, thus potentially unbounded. Hence, each process
model provided as input to Entropia, which is not guaran-
teed by definition to be bounded, is tested by default for
boundedness using LoLA ver. 2.0 [16]. One can check if a
process model is bounded using option —b of the tool. If the
boundedness of process models is established, one can invoke
Entropia with option —t to skip the model correctness tests.

Entropia is implemented in Java and integrates with the
LoLA tool compiled for Windows. To use Entropia on another
platform, one needs to recompile LoLA for that platform.

Different conformance techniques implemented in Entropia
have different performance characteristics. The computation
time of entropic relevance [9] is linear in the size of the
event log (number of traces times average length of a trace).
The computation of entropy-based precision and recall [5],
[6], [7] is low polynomial in the size of the reachability
graphs of the compared models of traces. However, in practice,
a reachability graph can be large, and possibly exponential
in the size of the original model due to state explosion.
Empirical evidence suggests that the approach grounded in
the exact matching of traces [5] runs in the order of seconds
on real-world datasets, as the state explosion does not manifest
often. Grounding in the partial matching of traces [6], on
the other hand, induces large reachability graphs. Thus, it
is recommended for small inputs, e.g., when calibrating a
new automated process discovery technique. The controlled
partial matching technique [7] can be configured by the user
to the desired performance, balancing the number of allowed
mismatches between similar traces and runtime, with fewer
allowed mismatches allowing faster computation. The tech-
niques reported in [5], [6] constitute the two extremes of the
trade-off spectrum. Finally, the computation of the stochastic
measures presented in [8] relies on an iterative procedure
which converges deterministically to the correct values, and is
often quick; but which can also lead to prolonged computation
times on real-world datasets.

Future work on Entropia will both aim to improve the
runtime performance of the current techniques and also im-
plement new state-of-the-art information theoretic approaches
to conformance checking, including those that assess quality
criteria beyond precision and recall. For example, in [17] initial

ideas are provided on using entropy to measure the simplicity
of a model automatically discovered from a log.

VII. CONCLUSION

This paper presents Entropia, an open-source command-line
tool for quantifying precision and recall conformance quality
criteria in process mining. The current version of the tool
implements several measures, all grounded in the notion of the
entropy of a collection of traces described by a process model
or event log. The supported measures can be used to assess
both classical and stochastic precision and recall, and fulfill
a wide range of desired properties suggested by the process
mining community. The development of the tool’s code base
commenced in 2017 and is maintained by the authors of the
implemented techniques.
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